Hi - I'm playing with the sharadar datasets and trying to work through some of the code along blocks. I've got some things working pretty well - but i don't understand some of the metrics being used in the fundamentals ones. It looks like the metrics being used are semi-static - i understand that EPS data for example is only updated quarterly, but things like MARKETCAP/EV/PRICE when querying quarterly fundamentals are only updated quarterly. I guess this is part of the reindex like forward fill that is happening - but it means in the code along that it is not updating for price changes when calculating daily metrics? Or am I missing something obvious? Can see what i mean in the code below from the code library - ev/ebit doesn't change? Is there a better way than to recalculate the market cap every day from actual prices and the reported shares outstanding? Thanks for any understanding, i must be missing something.
from quantrocket.fundamental import get_sharadar_fundamentals_reindexed_like
Request EV/EBIT. The dimension "ART" (= "As reported - trailing twelve months") excludes restatements.
fundamentals = get_sharadar_fundamentals_reindexed_like(closes, fields=["EVEBIT"], dimension="ART", domain="sharadar")
enterprise_multiples = fundamentals.loc["EVEBIT"]
Ignore negative enterprise multiples, which indicate negative earnings
enterprise_multiples = enterprise_multiples.where(enterprise_multiples > 0)
enterprise_multiples.tail()
ConId	113652	113738	113756	113760	113761	113764	113787	113810	113837	113892	...	199962	199972	199976	199977	199984	199989	199990	199997	199998	9198200
Date																					
2015-12-24	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	...	66.0	13.0	NaN	13.0	13.0	20.0	21.0	14.0	NaN	22.0
2015-12-28	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	...	66.0	13.0	NaN	13.0	13.0	20.0	21.0	14.0	NaN	22.0
2015-12-29	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	...	66.0	13.0	NaN	13.0	13.0	20.0	21.0	14.0	NaN	22.0
2015-12-30	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	...	66.0	13.0	NaN	13.0	13.0	20.0	21.0	14.0	NaN	22.0
2015-12-31	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	...	66.0	13.0	NaN	13.0	13.0	20.0	21.0	14.0	NaN
