Algos - how do you know they're correct?

How are you folks ensuring your algos are correct? Just running backtests and manually inspecting trades to build confidence?

I have started writing unit tests and it is saving me time. Running the unit tests are much faster than waiting for even a short backtest.

There's an example below. This is a helper function which takes a ln prices and returns whether there were any 15% gaps in the past 90 days.

It produces this one line of output:

TestResults(failed=0, attempted=5)

But if I mess the function up, say I shift the window the wrong way, it gives detailed output like this:

**********************************************************************
File "__main__", line 5, in __main__.jump_screen
Failed example:
    jump_screen(pd.DataFrame([[2],[2.31],[2.33]]).applymap(np.log), window=1)
Expected:
           0
    0  False
    1  False
    2   True
Got:
           0
    0  False
    1   True
    2  False
**********************************************************************
...

Here's the code. The tests are Python code in the docstring:

def jump_screen(ln_series, window=90):
    '''
    Tests whether ln_series has no +15%, -13% jumps in the past window days.
    
    >>> jump_screen(pd.DataFrame([[2],[2.31],[2.33]]).applymap(np.log), window=1)
           0
    0  False
    1  False
    2   True
    >>> jump_screen(pd.DataFrame([[2, 1,], [2.6, 1.1]]).applymap(np.log), window=1)
           0      1
    0  False  False
    1  False   True
    >>> jump_screen(pd.DataFrame([[1], [1.1], [1.2], [1.3]]).applymap(np.log), window=1)
           0
    0  False
    1   True
    2   True
    3   True
    >>> jump_screen(pd.DataFrame([[1,    1],
    ...                           [1.15, 1],
    ...                           [1.15, 1],
    ...                           [1.15, 0.86],
    ...                           [1.15, 0.86],
    ...                           [1.15, 0.86]]).applymap(np.log), window=2)
           0      1
    0  False  False
    1  False  False
    2  False   True
    3   True  False
    4   True  False
    5   True   True
    '''
    ln_delta = ln_series - ln_series.shift()
    no_jump = ln_delta.abs() < np.log(1.15)
    return no_jump.rolling(window).min().fillna(0.0).astype(bool)

doctest.testmod()

Only downside is that it is pretty verbose.

I'm interested in what others are using.